Random ultrametric trees and applications
نویسنده
چکیده
Ultrametric trees are trees whose leaves lie at the same distance from the root. They are used to model the genealogy of a population of particles co-existing at the same point in time. We show how the boundary of an ultrametric tree, like any compact ultrametric space, can be represented in a simple way via the so-called comb metric. We display a variety of examples of random combs and explain how they can be used in applications. In particular, we review some old and recent results regarding the genetic structure of the population when throwing neutral mutations on the skeleton of the tree. Résumé. Les arbres ultramétriques sont les arbres dont les feuilles se trouvent toutes à la même distance de la racine. Ces arbres sont utilisés pour modéliser la généalogie d’une population de particules qui co-existent à un temps donné. Nous montrons que la frontière d’un arbre ultramétrique, comme tout espace ultramétrique compact, peut être représentée simplement via ce que nous appelons la distance de peigne. Nous examinons plusieurs exemples de peignes aléatoires et nous expliquons comme ils peuvent être utilisés dans certaines applications. En particulier, nous évoquons quelques résultats anciens ou plus récents concernant la structure génétique de la population lorsque l’on jette des mutations neutres sur le squelette de l’arbre.
منابع مشابه
Ultrametric Logarithm Laws I.
We announce ultrametric analogues of the results of Kleinbock-Margulis for shrinking target properties of semisimple group actions on symmetric spaces. The main applications are S-arithmetic Diophantine approximation results and logarithm laws for buildings, generalizing the work of Hersonsky-Paulin on trees.
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملv 2 1 4 Ja n 20 05 Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure
We consider ultrametric space with a measure, such that the measure of any ball is positive. A family of orthonormal bases of ultrametric wavelets in the space of quadratically integrable functions is introduced. Pseudodifferential operators (PDO) in the ultrametric space are investigated. We prove that these operators are diagonal in the introduced bases of ultrametric wavelets and compute the...
متن کاملFe b 20 05 Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure
A family of orthonormal bases of ultrametric wavelets in the space of quadratically integrable with respect to arbitrary measure functions on general (up to some topological restrictions) ultrametric space is introduced. Pseudodifferential operators (PDO) on the ultrametric space are investigated. We prove that these operators are diagonal in the introduced bases of ultrametric wavelets and com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017